深度度量学习(Deep Metric Learning)
度量学习的任务是使用算法来学习输入对象之间的距离。它可以用于人脸识别认证,商品检索,通过训练的模型可以让相似对象之间的特征距离相近,不相似的对象之间的特征距离较远。深度学习模型能够有效学习这样的特征。本篇文章会介绍深度度量学习的基本原理和一些最近的进展。
什么是度量学习?
深度度量学习
- Contrastive Loss
R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping
- Semi-Hard Mining Strategy
- Lifted Structure Loss
Deep Metric Learning via Lifted Structured Feature Embedding
- Binomial BinDeviance lLoss
D. Yi, Z. Lei, and S. Z. Li. Deep metric learning for practical person re-identification
- NCA Loss
- Proxy-NCA
No Fuss Distance Metric Learning using Proxies
- N-pair loss
Improved Deep Metric Learning with Multi-class N-pair Loss Objective
- Clustering loss
Deep Metric Learning via Facility Location
- Angular loss
Deep Metric Learning with Angular Loss
- Multi-Similarity Loss
https://github.com/MalongTech/research-ms-loss
- Proxy Anchor Loss