TensorFlow 对模型的save和restore操作
前言
使用Tensorflow的时候经常需要对训练好的模型参数进行save和restore,具体来说比如评估模型,再训练模型,迁移学习,风格转移这些应用都包括对于训练好的参数的再利用。所以这里一起讨论一下如何正确地save和restore模型吧。
Save模型
import tensorflow as tf
#Prepare to feed input, i.e. feed_dict and placeholders
w1 = tf.placeholder(tf.float32, name="w1")
w2 = tf.placeholder(tf.float32, name="w2")
b1= tf.Variable(2.0, name="bias")
feed_dict ={w1:4, w2:8}
#Define a test operation that we will restore
w3 = tf.add(w1,w2)
w4 = tf.multiply(w3,b1,name="op_to_restore")
sess = tf.Session()
sess.run(tf.global_variables_initializer())
#Create a saver object which will save all the variables
saver = tf.train.Saver()
#Run the operation by feeding input
print sess.run(w4,feed_dict)
#Prints 24 which is sum of (w1+w2)*b1
#Now, save the graph
saver.save(sess, 'my_saved_model',global_step=1000)
执行上面的代码,完成后可以在当前目录发现存储好的文件:
$ ls
checkpoint my_saved_model-1000.index
my_saved_model-1000.data-00000-of-00001 my_saved_model-1000.meta
Restore模型
import tensorflow as tf
sess=tf.Session()
#First let's load meta graph and restore weights
saver = tf.train.import_meta_graph('/my_saved_model-1000.meta')
saver.restore(sess,tf.train.latest_checkpoint('./'))
# Access saved Variables directly
print(sess.run('bias:0'))
# This will print 2, which is the value of bias that we saved
# Now, let's access and create placeholders variables and
# create feed-dict to feed new data
graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("w1:0")
w2 = graph.get_tensor_by_name("w2:0")
feed_dict ={w1:13.0,w2:17.0}
#Now, access the op that you want to run.
op_to_restore = graph.get_tensor_by_name("op_to_restore:0")
print sess.run(op_to_restore,feed_dict)
#This will print 60 which is calculated
技巧
- 命名存储目录为当前时间
from datetime import datetime import tensorflow as tf import os model_dir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%s') saver = tf.train.Saver() saver.save(sess, os.path.join(model_dir, 'my_saved_model'), global_step=1000)
- 每个model目录存放三个model文件
import tensorflow as tf saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)
- 寻找目录中的meta文件
import glob glob.glob('*.meta') # ['my_saved_model-1000.meta']
- 将当前项目的git版本存储报告
import os import tensorflow as tf from subprocess import Popen, PIPE def store_revision_info(src_path, output_dir): try: # Get git hash cmd = ['git', 'rev-parse', 'HEAD'] gitproc = Popen(cmd, stdout=PIPE, cwd=src_path) stdout, _ = gitproc.communicate() git_hash = stdout.strip() print(git_hash) except OSError as e: git_hash = ' '.join(cmd) + ': ' + e.strerror try: # Get local changes cmd = ['git', 'diff', 'HEAD'] gitproc = Popen(cmd, stdout=PIPE, cwd=src_path) stdout, _ = gitproc.communicate() git_diff = stdout.strip() print(git_diff) except OSError as e: git_diff = ' '.join(cmd) + ': ' + e.strerror # Store a text file in output_dir rev_info_filename = os.path.join(output_dir, 'revision_info.txt') with open(rev_info_filename, 'w') as f: f.write('tensorflow version: %s\n--------------------\n' % tf.__version__) f.write('git hash: %s\n--------------------\n' % git_hash) f.write('git diff: %s\n--------------------\n' % git_diff)
- 打印checkpoint文件中的变量值
from tensorflow.python.tools.inspect_checkpoint import print_tensors_in_checkpoint_file print_tensors_in_checkpoint_file('./my_saved_model-1000', tensor_name=None, all_tensors=True, all_tensor_names=True) print_tensors_in_checkpoint_file('./my_saved_model-1000', tensor_name='bias', all_tensors=False, all_tensor_names=False) # tensor_name: bias # 2.0